J.K. SHAH CLASSES

MATHEMATICS & STATISTICS

SYJC TEST - 02 - SET 1 CONTINUITY +

TOPIC : REGRESSION DURATION - $1^{1}/_{2}$ HR

MARKS - 40

() _ 1

SOLUTION SET **SECTION - I**

 $f(x) = \frac{x^2 - 3x + 2}{x - 1} ; x \neq 1$ 01. 3 ; x = 1

Discuss continuity at x = 1

SOLUTION:

STEP 1

Lim f(x) $x \rightarrow 1$

= Lim $\frac{x^2-3x+2}{x-1}$ $x \rightarrow 1$

- $\frac{(x-1)(x-2)}{x-1}$ = Lim x – 1 ≠ 0 $x \! \rightarrow \, 1$
- = Lim x – 2 $x \rightarrow 1$

= 1 - 2

- 1 STEP 2 :

f(1) = 3 given

STEP 3 :

 $f(1) \neq \text{Lim } f(x)$ $x \rightarrow 1$ \therefore *f* is discontinuous at x = 1

STEP 4 : **REMOVABLE DISCONTINUITY**

f can be made continuous at x = 1 by redefining it as $f(x) = x^2 - 3x + 2$; $x \neq 1$ x - 1 -1 ; x = 1 =

02.
$$f(x) = \frac{\log(1 + 2x)}{x}$$
; $x \neq 0$
= 2; $x = 0$

Discuss continuity at x = 0

SOLUTION: STEP 1 Lim f(x) $x \rightarrow 0$ = Lim $\log(1 + 2x)$ $x \rightarrow 0$ x = $\lim_{x \to \infty} 2 \log (1 + 2x)$ $x \rightarrow 0$ 2x2(1) 2 STEP 2 : STEP 3 : $f(0) = \lim_{x \to 0} f(x)$ x→0 $\therefore f$ is continuous at x = 0 = 2 Discuss continuity at x = 0SOLUTION : STEP 1 Lim f(x) $x \rightarrow 0$

$$= \lim_{x \to 0} \frac{e^{2x} - 1}{5x}$$
$$= \lim_{x \to 0} \frac{1}{5} \frac{e^{2x} - 1}{x}$$

=
$$\lim_{x \to 0} \frac{2}{5} \frac{e^{2x} - 1}{2x}$$

= =

f(0) = 2 given

03. $f(x) = \frac{e^{2x} - 1}{5x}$; $x \neq 0$; x = 0

- 1 -

= 2/5

STEP 2 :

f(0) = 2 given

STEP 3 :

 $f(0) \neq \lim_{x \to 0} f(x)$ $\therefore f \text{ is discontinuous at } x = 0$

STEP 4 :

REMOVABLE DISCONTINUITY

f can be made continuous at x = 0 by redefining it as

$$f(x) = \frac{e^{2x} - 1}{5x} ; x \neq 0$$
$$= \frac{2}{5} ; x = 0$$

04.
$$f(x) = \frac{\sin^2 x}{1 - \cos^3 x} ; x \neq 0$$
$$= 3/2 ; x = 0$$
Discuss continuity at x = 0

STEP 1

 $\begin{array}{ll} \text{Lim} & f(x) \\ x \rightarrow 0 \end{array}$

$$= \lim_{x \to 0} \frac{\sin^2 x}{1 - \cos^3 x}$$

= Lim
$$\frac{1 - \cos^2 x}{(1 - \cos x)(1 + \cos x + \cos^2 x)}$$

= Lim
$$(1 - \cos x)(1 + \cos x)$$

 $x \to 0$ $(1 - \cos x)(1 + \cos x + \cos^2 x)$

as
$$x \rightarrow 0$$
, $1 - \cos x \neq 0$

- $= \lim_{x \to 0} \frac{1 + \cos x}{1 + \cos x + \cos^2 x}$
- $= \frac{1 + \cos 0}{1 + \cos 0 + \cos^2 0}$

$$\frac{1+1}{1+1+1}$$

STEP 2 :

_

=

f(0) = 1 given

STEP 3 :

 $f(0) \neq \lim_{x \to 0} f(x)$ $\therefore f \text{ is discontinuous at } x = 0$

STEP 4 :

REMOVABLE DISCONTINUITY

f can be made continuous at x = 0 by redefining it as

$$f(x) = \frac{\sin^2 x}{1 - \cos^3 x} ; x \neq 0$$

= 2/3 ; x = 0

Q - 2 Q2. Attempt any TWO of the following (3 marks each) (6 marks)

01. $f(x) = x^2 + 1$; x < 0= $5\sqrt{x^2 + 1}$ + k; $x \ge 0$

find k if the f is continuous at x = 0

SOLUTION :

STEP 1

$$\lim_{x \to 0^{-}} f(x)$$

$$= \lim_{x \to 0^{-}} x^{2} + 1$$

$$= 0^{2} + 1 = 1$$
STEP 2
$$\lim_{x \to 0^{+}} f(x)$$

$$= \lim_{x \to 0} 5\sqrt{x^{2} + 1} + k$$

$$= 5\sqrt{0^{2} + 1} + k$$

$$= 5 + k$$

STEP 3

$$f(0) = 5\sqrt{0^2 + 1} + k$$

= 5 + k

STEP 4

Since f is continuous at x = 0

 $\begin{array}{rcl} \text{Lim} & f(x) & = & \text{Lim} & f(x) & = & f(0) \\ x \rightarrow 0 - & & x \rightarrow 0 + & & \\ 1 & = & 5 + k & = & 5 + k \\ 5 + k & = & 1 \\ k & = & -4 \end{array}$

02. $f(x) = \frac{6^x + 3^x - 2^x - 1}{x}$; $x \neq 0$ find f(0) if f is continuous at x = 0

SOLUTION :

STEP 1

 $\begin{array}{ll} \text{Lim} & f(x) \\ x \rightarrow 0 \end{array}$

- = Lim $6^{x} + 3^{x} 2^{x} 1$ x $x \to 0$
- = Lim $6^{x} 1 + 3^{x} 2^{x}$ x $x \to 0$ x
- = Lim $x \to 0$ $\frac{6^{x} - 1 + 3^{x} - 1 - 2^{x} + 1}{x}$
- = $\lim_{x \to 0} \frac{6^x 1 + 3^x 1 (2^x 1)}{x}$
- = Lim $x \to 0$ $\frac{6^{x}-1}{x} + \frac{3^{x}-1}{x} - \frac{2^{x}-1}{x}$
- = log 6 + log 3 log 2
- $= \log\left(\frac{6.3}{2}\right)$
- = log 9

STEP 2 :

Since f is continuous at x = 0

 $f(0) = \lim_{x \to 0} f(x)$

03. $f(x) = \frac{\tan x - \sin x}{x^3}$; $x \neq 0$ find f(0) if f is continuous at x = 0

STEP 1

 $\begin{array}{ll} \text{Lim} & f(x) \\ x \rightarrow 0 \end{array}$

- = Lim $\frac{\tan x \sin x}{x^3}$
- $= \lim_{x \to 0} \frac{\sin x}{\cos x} \sin x}{x^3}$
- $= \lim_{x \to 0} \frac{\sin x \sin x \cdot \cos x}{\cos x \cdot x^3}$

$$= \lim_{x \to 0} \frac{\sin x (1 - \cos x)}{\cos x \cdot x^3}$$

$$\begin{array}{c} \text{tan } x \ . \ 2 \sin^2 x \\ \text{tan } x \ . \ 2 \sin^2 x \\ x \rightarrow 0 \end{array}$$

=

$$= \lim_{x \to 0} \frac{\tan x}{x} \cdot \frac{2\sin^2 x}{\frac{2}{x^2}}$$

$$= \lim_{x \to 0} \frac{\tan x}{x} \cdot 2 \left(\frac{\sin x}{2} \right)^2$$

$$= \lim_{x \to 0} \frac{\sin x}{x} \cdot 2 \left(\frac{1}{2} \sin \frac{x}{2}}{\frac{x}{2}}\right)^{2}$$
$$= 1 \cdot 2 \left(\frac{1}{2} \cdot 1\right)^{2}$$
$$= \frac{1}{2}$$

Since f is continuous at x = 0

$$f(0) = \lim_{x \to 0} f(x)$$
$$= 1/2$$

Q3. Attempt any TWO of the following (4 marks each) (8 marks)

01. if the f given below is continuous at x = 2 and x = 4 then find a & b $f(x) = x^2 + ax + b$: x < 2

$$\begin{array}{rcl}
(x) & - & x + ax + b & , & x < 2 \\
& = & 3x + 2 & ; & 2 \le x \le 4 \\
& = & 2ax + 5b & ; & 4 < x
\end{array}$$

SOLUTION :

PART – 1

STEP 1

- Lim f(x) x→2-
- = Lim $x^2 + ax + b$ $x \rightarrow 2$
- $= 2^2 + a(2) + b$
- = 4 + 2a + b

STEP 2

 $\begin{array}{ll} \text{Lim} & f(x) \\ x \rightarrow 2 + \end{array}$

 $= \lim_{x \to 2} 3x + 2$

= 3(2) + 2 = 8

STEP 3

f(2) = 3(2) + 2 = 8

STEP 4

Since the f is continuous at x = 2Lim f(x) = Lim f(x) = f(2)

 $x \rightarrow 2 x \rightarrow 2+$ 4 + 2a + b = 8 = 8 2a + b = 4 (1)

STEP 1

$$Lim f(x)$$

$$x \rightarrow 4 -$$

$$= Lim 3x + 2$$

$$x \rightarrow 4$$

= 3(4) + 2 = 14

STEP 2

Q - 3

 $\begin{array}{ll} \text{Lim} & f(x) \\ x \rightarrow 4 + \end{array}$

 $= \lim_{x \to 4} 2ax + 5b$ = 2a(4) + 5b= 8a + 5b

STEP 3

f(4) = 3(4) + 2 = 14

STEP 4

Solving (1) and (2) : a = 3, b = -2

02. find f(0) if f is continuous at x = 0 where

$$f(x) = \frac{5^{x} + 5^{-x} - 2}{x^{2}} ; x \neq 0$$

SOLUTION :

STEP 1

 $\begin{array}{ll} \text{Lim} & f(x) \\ x \rightarrow 0 \end{array}$

= Lim
$$5^{x} + 5^{-x} - 2$$

 $x \to 0$ x^{2}

 $= \lim_{x \to 0} 5^{x} + 1 - 2$

Lim

$$x \to 0$$
 $(5^{x})^{2} + 1 - 2.5^{x}$
 $x^{2} \cdot 5^{x}$

=
$$\lim_{x \to 0} \frac{(5^{x} - 1)^{2}}{x^{2}} \frac{1}{5^{x}}$$

$$= \lim_{x \to 0} \left(\frac{5^{x}-1}{x}\right)^{2} \frac{1}{5^{x}}$$

 $= (\log 5)^2 \frac{1}{5^0}.$

= (log 5)²

STEP 2

=

Since f is continuous at x = 0

$$f(0) = \lim_{x \to 0} f(x)$$

 $f(0) = (\log 5)^2.$

03.
$$f(x) = \frac{1 - \sin x}{(\pi - 2x)^2}$$
; $x \neq \frac{\pi}{2}$
find $f(\frac{\pi}{2})$ if f is continuous at $x = \frac{\pi}{2}$

Step 1

 $\lim_{x \to \pi/2} f(x)$ $x \to \pi/2$ $put \qquad x = \frac{\pi}{2} + h$ $= \lim_{h \to 0} \frac{1 - \sin\left(\frac{\pi}{2} + h\right)}{\left(\pi - 2\left(\frac{\pi}{2} + h\right)\right)^{2}}$ $= \lim_{h \to 0} \frac{1 - \cos h}{(\pi - \pi - 2h)^{2}}$ $= \lim_{h \to 0} \frac{2 \sin^{-2}\left(\frac{h}{2}\right)}{4h^{2}}$ $= \lim_{h \to 0} \frac{\frac{2}{4} \frac{\sin^{-2}\left(\frac{h}{2}\right)}{h^{2}}$

$$= \lim_{h \to 0} \frac{2}{4} \left(\frac{\sin \frac{h}{2}}{h} \right)^2$$

$$= \lim_{h \to 0} \frac{\frac{2}{4}}{\frac{1}{2}} \left(\frac{1 \sin \frac{h}{2}}{\frac{1}{2}} \right)^{2}$$
$$= \frac{2}{4} \left(\frac{1}{2} \cdot 1 \right)^{2}$$
$$= \frac{1}{8}$$

Step 2 :

Since f is continuous at $x = \pi/2$

$$f(\frac{\pi}{2}) = \lim_{x \to \pi/2} f(x)$$
$$= \frac{1}{8}$$

Q4. Attempt any THREE of the following (2 marks each) (6 marks)

01. Values of two regression coefficients between the variables X and Y are byx = - 0.4 and bxy = - 2.025 respectively. Obtain the value of correlation coefficient

SOLUTION

 $r^{2} = byx x bxy$ $r^{2} = -0.4 x -2.025$ $r^{2} = \frac{4}{10} x \frac{2025}{1000}$ $r^{2} = \frac{8100}{10000}$ $r^{2} = \frac{81}{100}$

$$r = \pm \frac{9}{10}$$

 $r = -\frac{9}{10}$ (byx & bxy are -ve)

02. for a bivariate data ;

 $\overline{x} = 53$, $\overline{y} = 28$, byx = -1.5 , bxy = -0.2 . Estimate of y for x = 50

_

SOLUTION

$$y - y = byx(x - x)$$

$$y - 28 = -1.5(x - 53)$$

$$y - 28 = -1.5(50 - 53)$$

$$y - 28 = -1.5(-3)$$

$$y - 28 = 4.5$$

$$y = 32.5 \text{ for } x = 50$$

03. from the data of 20 pairs of observations on X and Y following results are obtained

$$\overline{x} = 199$$
; $\overline{y} = 94$; $\Sigma(x - \overline{x})^2 = 1298$
 $\Sigma(y - \overline{y})^2 = 600$; $\Sigma(x - \overline{x})(y - \overline{y}) = -262$
Obtain regression coefficient bxy

SOLUTION

bxy	=	$\Sigma(x - \overline{x})(y - \overline{y})$		
		$\Sigma(y - y)^2$		
	=	-262	LOG CALC	
		600	2.4183 - 2.7782	
	=	0.4366	AL 1.6401	
			0.4366	

04. The equation of the two regression lines are

3x + 2y - 26 = 0 and 6x + y - 31 = 0.

Find mean's

SOLUTION

$$2 x \quad 3x + 2y = 26$$
$$6x + y = 31$$
$$- \frac{6x + 4y = 52}{6x + y = 31}$$
$$3y = 21$$
$$\overline{y} = 7$$
subs in (1) $\overline{x} = 4$

Q5. Attempt any TWO of the following

Q-5

(3 marks each)

01. you are given below the following information about advertising and sales

	Adv. Exp. (x)	sales (y)	in lacs	
Mean	10	90		

S.D. 3 12 r = 0.8.

What is the likely sales when adv. budget is \square 15 lacs

SOLUTION YON X

by $= r \cdot \frac{\sigma y}{\sigma x}$ = 0.8 x $\frac{12}{3}$

- $= 0.8 \times 4$
- = 3.2
- y y = byx(x x)
- y 90 = 3.2(x 10)
- y 90 = 3.2x 32
- y = 3.2x 32 + 90
- y = 3.2x + 58
- Put x = 15
- y = 3.2(15) + 58
- y = 48 + 58 y = 3.75x 39
- y = 106 Estimated Sales = \Box 106 lacs

03. Find the equation of line of regression of Y on X for the following data n = 8; $\Sigma(x - \overline{x})(y - \overline{y}) = 120$; $\overline{x} = 20$ $\overline{y} = 36$; $\sigma x = 2$; $\sigma y = 3$ SOLUTION **byx** = cov(x,y)σx² $\Sigma((x - \overline{x})(y - \overline{y})$ = n σx² 120 = 8 = 15 = 3.75 4 Yon X $y - \overline{y} = byx (x - \overline{x})$ y - 36 = 3.75(x - 20)

y - 36 = 3.75x - 75

y = 3.75x - 75 + 36

02. For group of 100 students the equation of regression line of marks in Economics (Y) on marks in Book keeping (X) is given by 4x - 3y -120 = 0. Ratio of variance of x to variance of y is 9 : 25 . Find measure of acute angle between the regression lines

SOLUTION :

GIVEN :	Y ON X	:	4x - 3y - 120 = 0
	σx^2	=	9
	σy ²		25

STEP 1

Y ON X :
$$4x - 3y - 120 = 0$$

 $3y = 4x - 120$
 $y = \frac{4x}{3} - \frac{120}{3}$
 $byx = \frac{4}{3}$

STEP 2
byx =
$$r \cdot \frac{\sigma y}{\sigma x}$$

 $\frac{4}{3}$ = $r \cdot \frac{5}{3}$
 $r = \frac{4}{5}$

STEP 3

bxy	=	r. <u>σx</u> σy	
	=	<u>4</u> x <u>3</u> 5 5	
	=	<u>12</u> 25	

STEP 4

 $m_1 = byx = \frac{4}{3}$ m₂ = 1 = 25 12 bxy

STEP 5

$$\tan \theta = \begin{vmatrix} m_1 - m_2 \\ 1 + m_1 \cdot m_2 \end{vmatrix}$$

 $\tan \theta = \begin{vmatrix} \frac{4}{3} & -\frac{25}{12} \\ \frac{1}{1} + \frac{4}{25} \\ \frac{25}{3} \\ \frac{1}{12} \end{vmatrix}$ $\tan \theta = \left| \frac{48 - 75}{36 + 100} \right|$ $\tan \theta = \left| \frac{-27}{136} \right|$ $\tan \theta = \frac{27}{136}$ $\theta = \tan \frac{-1}{136}$

Q6. Attempt any TWO of the following

(4 marks each)

01. x : index of production

y : no. of unemployed (in lacs)

find regression line y on x

x	у	x – x	y – y	$(x-\overline{x})^2$	$(y - \overline{y})^2$	$(x - \overline{x})(y - \overline{y})$
100	15	- 4	0	16		0
102	12	- 2	- 3	4		6
104	13	0	- 2	0		- 0
107	11	3	- 4	9		-12
105	12	1	- 3	1		- 3
112	12	8	- 3	64		-24
103	19	- 1	4	1		- 4
99	26	- 5	11	25		-55
832	120	0	0	120		- 98 + 6 =-92
$\begin{bmatrix} \Sigma \mathbf{x} & \Sigma \mathbf{y} \\ \hline \mathbf{x} = 104 & \overline{\mathbf{y}} = 15 \end{bmatrix} \mathbf{\Sigma} (\mathbf{x} + \mathbf{y})$				$\Sigma(x-\overline{x})^2$	$\Sigma(y-\overline{y})^2$	$\Sigma(x-\overline{x})(y-\overline{y})$

byx =
$$\frac{\Sigma(x - \overline{x})(y - \overline{y})}{\Sigma(x - x)^2}$$

= $\frac{-92}{120}$
= -0.77
 $y - \overline{y} = byx(x - \overline{x})$
 $y - 15 = -0.77(x - 104)$
 $y - 15 = -0.77x + 80.08$
 $y = -0.77x + 80.08 + 15$
 $y = -0.77x + 95.08$

Q-6

02.

The records of ten days is given

 $\Sigma x = 580$; $\Sigma y = 370$; $\Sigma x^2 = 41658$; $\Sigma y^2 = 17206$; $\Sigma xy = 11494$

Obtain regression line Y on X

SOLUTION

$$byx = \frac{n\Sigma xy - \Sigma x.\Sigma y}{n\Sigma x^2 - (\Sigma x)^2}$$

$$= \frac{10(11494) - (580)(370)}{10(41658) - (580)^2}$$

$$= \frac{114940 - 214600}{416580 - 336400}$$

$$= \frac{-99660}{80180}$$

$$= -\frac{9966}{8018}$$

$$= -\frac{9966}{8018}$$

$$= -1.244$$

 $y - \overline{y} = byx(x - \overline{x})$ y - 37 = -1.244(x - 58) y - 37 = -1.244x + 72.152 y = -1.244x + 72.152 + 37y = -1.244x + 109.152 2x - y - 15 = 0 & 3x - 4y + 25 = 0Find the coefficient of correlation

STEP 1

ASSUME

XON Y:
$$2x - y - 15 = 0$$

 $2x = y + 15$
 $x = \frac{1}{2}y + \frac{15}{2}$
 $bxy = \frac{1}{2}$
Y ON X: $3x - 4y + 25 = 0$
 $4y = 3x + 25$
 $y = \frac{3}{4}x + \frac{25}{4}$
 $byx = \frac{3}{4}$

STEP 2

$$r^{2} = bxy \cdot byx$$
$$= \frac{1}{2} x \frac{3}{4}$$
$$= \frac{3}{8}$$

Since $0 \ \leq \ r^2 \ \leq 1$ Our assumptions are correct

$$r = \pm \sqrt{\frac{3}{8}}$$

$$r = \pm \sqrt{\frac{3}{8}} \quad (byx \ bxy \ are \ + \ ve)$$

$$log \ r = \frac{1}{2} \left(log \ 3 - log \ 8 \right)$$

$$log \ r = \frac{1}{2} \left(0.4771 - 0.9031 \right)$$

$$log \ r = \frac{0.4771}{2} - \frac{0.9031}{2}$$

$$log \ r = 0.2386 - 0.4516$$

$$log \ r = 1.7870$$

$$r = AL(1.7870)$$

$$r = 0.6124$$